Early Metal Dicarbollide Chemistry.
 Characterization of an Unusual Bridging $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}{ }^{2-}$ Bonding Mode in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2} \mathrm{Hf}_{2} \mathrm{Me}_{2}$

Donna J. Crowther, Dale C. Swenson, and Richard F. Jordan*

Department of Chemistry, University of Iowa Iowa City, Iowa 52242

Received June 8, 1995

The alkane elimination reaction of $\mathrm{Cp}{ }^{*} \mathrm{MMe}_{3}\left(\mathrm{Cp}^{*}=\mathrm{C}_{5}{ }^{-}\right.$ $\mathrm{Me}_{5} ; \mathrm{M}=\mathrm{Zr}$, Hf) with $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{13}$ yields new metallocarborane complexes of stoichiometry $\left[\mathrm{Cp}^{*}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right) \mathrm{MMe}\right]_{n}(\mathbf{1 a}, \mathrm{M}=$ $\mathrm{Zr} ; \mathbf{1 b}, \mathrm{M}=\mathrm{Hf}) .{ }^{1}$ These species polymerize ethylene and oligomerize propylene, form Lewis base adducts, insert 2-butyne, and undergo thermal elimination of methane yielding 2-4, respectively. NMR data for $2-4$ and X-ray crystallographic results for $\mathbf{3 a}$ and $\mathbf{4 a}$ establish that these compounds adopt bent metallocene structures with $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$ ("dicarbollide", "dc") ligands, similar to the structures of $\mathrm{d}^{0} \mathrm{Cp}_{2} \mathrm{M}(\mathrm{R})(\mathrm{L})_{x^{n+}}$ species. ${ }^{2}$ However, development of the analogy between $(\mathrm{Cp})\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right) \mathrm{M}$ (R) and $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{R})^{+}$species has been hindered because the structures of the parent compounds $\mathbf{1 a}, \mathbf{b}$ are unknown. Here we report that $\mathbf{1 b}$ adopts an unsymmetrical dinuclear structure with an unusual bridging dicarbollide ligand.

2a,b

3a,b

4a,b

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}$ (toluene- d_{8}) contains two Cp^{*} resonances, two $\mathrm{Hf}-\mathrm{Me}$ resonances, and four dicarbollide $\mathrm{C}-\mathrm{H}$ resonances. ${ }^{3}$ Two of the latter resonances ($\delta 3.74,3.22$) appear in the range observed for $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$ complexes 2-4 $(\delta 2.22-$ 3.37) while the other two appear at higher field ($\delta 1.85,1.53$), in the range observed for $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}{ }^{-}$salts $(\delta 1.7-1.9){ }^{4}$ These data indicate that in noncoordinating solvents $\mathbf{1 b}$ adopts an

[^0]

Figure 1. ORTEP view of $\mathbf{1 b}$ showing 35% probability ellipsoids. Centroids are abbreviated as follows: $\mathrm{C}(100), \mathrm{C}(1)-\mathrm{C}(5)$ ring; $\mathrm{C}(200)$, $\mathrm{C}(11)-\mathrm{C}(15)$ ring; $\mathrm{B}(300), \mathrm{C}(31)-\mathrm{B}(35)$ ring; $\mathrm{B}(400), \mathrm{B}(55)-\mathrm{B}(56)-$ $\mathrm{B}(60)$ face; $\mathrm{B}(500), \mathrm{B}(53)-\mathrm{B}(54)$ midpoint. Bond lengths (\AA) and angles (deg): $\mathrm{Hf}(1)-\mathrm{C}(200) 2.24 ; \mathrm{Hf}(1)-\mathrm{C}(21) 2.239(6) ; \mathrm{Hf}(1)-\mathrm{C}(22)$ $2.228(6) ; \mathrm{Hf}(1)-\mathrm{B}(55) 2.658(4) ; \mathrm{Hf}(1)-\mathrm{B}(56) 2.653(4) ; \mathrm{Hf}(1)-\mathrm{B}(60)$ 2.654(4); $\mathrm{Hf}(1)-\mathrm{H}(55)$ 2.26; $\mathrm{Hf}(1)-\mathrm{H}(56) 2.28 ; \mathrm{Hf}(1)-\mathrm{H}(60) 2.32$; $\mathrm{Hf}(2)-\mathrm{C}(100) 2.22 ; \mathrm{Hf}(2)-\mathrm{B}(300) 2.04 ; \mathrm{Hf}(2)-\mathrm{B}(53) 2.502(5) ; \mathrm{Hf}-$ (2)-B(54) 2.459(4); $\mathrm{Hf}(2)-\mathrm{H}(53) 2.30 ; \mathrm{Hf}(2)-\mathrm{H}(54) 2.27 ; \mathrm{C}(200)-$ $\mathrm{Hf}(1)-\mathrm{B}(400) 131.5 ; \mathrm{C}(200)-\mathrm{Hf}(1)-\mathrm{C}(21) 108.6$: $\mathrm{C}(200)-\mathrm{Hf}(1)-$ $\mathrm{C}(22) 106.8 ; \mathrm{B}(400)-\mathrm{Hf}(1)-\mathrm{C}(21) 101.9 ; \mathrm{B}(400)-\mathrm{Hf}(1)-\mathrm{C}(22) 101.9$; $\mathrm{C}(21)-\mathrm{Hf}(1)-\mathrm{C}(22) 102.9(4) ; \mathrm{C}(100)-\mathrm{Hf}(2)-\mathrm{B}(300) 135.4 ; \mathrm{C}(100)-$ $\mathrm{Hf}(2)-\mathrm{B}(500) 113.5 ; \mathrm{B}(300)-\mathrm{Hf}(2)-\mathrm{B}(500) 111.0$.
unsymmetrical structure of nuclearity 2 or higher and suggest that only one dicarbollide ligand is bound in an η^{5} manner. Consistent with these conclusions, the ${ }^{13} \mathrm{C}$ NMR spectrum of 1b contains two $C_{5} \mathrm{Me}_{5}$, two $\mathrm{C}_{5} \mathrm{Me}_{5}$, and two $\mathrm{Hf}-\mathrm{Me}$ resonances, as well as two (broad) dicarbollide $\mathrm{C}-\mathrm{H}$ resonances. The solid state CP-MAS ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 b}$ is similar to the solution spectrum and establishes that the solid state and solution structures are very similar. The ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{1 b}$ is complex and uninformative, and reproducible solution molecular weight data could not be obtained due to solubility limitations. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}$ is essentially unchanged between 212 and 350 K , at which temperature methane elimination and formation of $\mathbf{4 b}$ are rapid. Thus $\mathbf{1 b}$ is not fluxional in this temperature range. As these data do not allow a structural assignment for $\mathbf{1 b}$, an X-ray crystallographic study was undertaken. ${ }^{5}$

As illustrated in Figure 1, 1b adopts a dinuclear structure composed of $\mathrm{Cp}^{*}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right) \mathrm{Hf}^{+}$and $\mathrm{Cp}^{*} \mathrm{HfMe}_{2}{ }^{+}$fragments bridged by a $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}{ }^{2-}$ group. The $\mathrm{Cp}^{*}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right) \mathrm{Hf}^{+}$unit $(\mathrm{Hf}(2))$ has a bent metallocene structure with a symmetrically coordinated $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}{ }^{2-}$ ligand. The $\mathrm{Hf}(2)-\mathrm{B}\left(\eta^{5}-\mathrm{dc}\right)$ and $\mathrm{Hf}-$ (2) $-\mathrm{C}\left(\eta^{5}-\mathrm{dc}\right)$ distances $(2.48-2.53 \AA)$ and centroid- $\mathrm{Hf}(2)-$ centroid angle (135.4°) are comparable to those in 3a and $\mathbf{4 a}$. The $\mu-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}{ }^{2-}$ group binds to $\mathrm{Hf}(2)$ via two $\mathrm{B}-\mathrm{H}-\mathrm{Hf}$ bridges involving $\mathrm{B}-\mathrm{H}$ units on the open $\mathrm{C}_{2} \mathrm{~B}_{3}$ face $(\mathrm{B}(53)$,

[^1]$\mathrm{B}(54))$. The donor $\mathrm{B}-\mathrm{H}$ units are centered in the metallocene wedge and lie in the "equatorial" plane between the two η^{5} ligands; i.e., $\mathrm{B}(53)$ and $\mathrm{B}(54)$ are nearly equidistant from the centroid- $\mathrm{Hf}(2)$-centroid plane, ${ }^{6}$ and the dihedral angle between the $\mathrm{B}(53)-\mathrm{Hf}(2)-\mathrm{B}(54)$ and centroid $-\mathrm{Hf}(2)$-centroid planes is 89.3°. The $\mathrm{Hf}(2)-\mathrm{B}(\mu-\mathrm{dc})$ distances (2.46 and $2.50 \AA$) are almost identical to the $\mathrm{Hf}(2)-\mathrm{B}\left(\eta^{5}-\mathrm{dc}\right)$ distances, despite the fact that $\mathrm{Hf}(2)$ lies outside of the open $\mathrm{C}(51)-\mathrm{B}(55)$ face and overlap of the $\mu-\mathrm{dc}^{2-}$ donor orbitals and $\mathrm{Cp}^{*}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right) \mathrm{Hf}^{+}$ acceptor orbitals is consequently not optimal. ${ }^{7.8}$ The $\mathrm{Hf}(2)$ $\mathrm{H}(53)$ and $\mathrm{Hf}(2)-\mathrm{H}(54)$ distances $(2.30,2.27 \AA)$ are indicative of significant $\mathrm{Hf}-\mathrm{H}$ interactions. Overall, the geometry around $\mathrm{Hf}(2)$ is similar to that in $\mathbf{3 a}, \mathbf{4 a}$, and other d^{0} bent metallocenes containing Cp^{*} and dicarbollide ligands. ${ }^{9}$ The $\mathrm{Cp} * \mathrm{HfMe}_{2}{ }^{+}$unit ($\mathrm{Hf}(1)$) binds the $\mu-\mathrm{dc}^{2-}$ group via three $\mathrm{B}-\mathrm{H}-\mathrm{Hf}$ bridges involving the remaining $\mathrm{B}-\mathrm{H}$ unit on the $\mathrm{C}_{2} \mathrm{~B}_{3}$ face ($\mathrm{B}(55)$) and two adjacent $B-H$ units on the lower ring ($B(56), B(60)$). The $\mathrm{B}-\mathrm{H}-\mathrm{Hf}$ interactions involving $\mathrm{Hf}(1)$ are characterized by longer $\mathrm{Hf}-\mathrm{B}$ distances ($2.65-2.66 \AA$) but similar $\mathrm{Hf}-\mathrm{H}$ distances ($2.26-2.32 \AA$) compared to the $\mathrm{Hf}(2)-\mathrm{H}-\mathrm{B}$ interactions. This difference reflects the greater charge and HOMO coefficients on the B atoms on the open face versus the other cage positions of $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}{ }^{2-} .8$ The geometry and $\mathrm{B}-\mathrm{H}-\mathrm{Hf}$ interactions at $\mathrm{Hf}(1)$ are very similar to the Zr geometry and $\mathrm{B}-\mathrm{H}-\mathrm{Zr}$ interactions in $\left[\mathrm{Cp} * \mathrm{ZrMe}_{2}\right]\left[\mathrm{CB}_{11} \mathrm{H}_{12}\right]$, a tight ion pair which is held together by three $\mathrm{B}-\mathrm{H}-\mathrm{Zr}$ bridges. ${ }^{10}$

On the basis of these structural results, $\mathbf{1 b}$ may reasonably be represented as the ion pair $\left[\mathrm{Cp}^{*} \mathrm{HfMe}_{2}\right]\left[\mathrm{Cp}^{*}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right.$ -$\left.\mathrm{Hf}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$. This structure differs considerably from the

[^2]unsymmetrical dinuclear $\mathrm{Cp}_{2}{ }_{2} \mathrm{M}(\mu-\mathrm{X}) \mathrm{MCp}_{2} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Me})$ structures typically observed for sterically comparable $\mathrm{d}^{0} \mathrm{Cp}^{*} 2^{-}$ MX species. ${ }^{11}$ The preference for a dicarbollide-bridged structure rather than a Me-bridged structure for $\mathbf{1 b}$ reflects the basicity of the $\mathrm{B}-\mathrm{H}$ bonds and the distribution of charge over both the open face and the exterior of the $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}{ }^{2-}$ cage. ${ }^{8}$

The unusual bonding interactions in $\mathbf{1 b}$ have precedent in other heterocarborane structures. The dihapto $-(\mu-\mathrm{H})_{2}-$ coordination of the $\mu-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}{ }^{2-}$ group to $\mathrm{Hf}(2)$ is reminiscent of the structure of $\mathrm{Et}_{2} \mathrm{Al}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right)$, in which a $\mathrm{Et}_{2} \mathrm{Al}^{+}$unit coordinates $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}{ }^{2-}$ via two $\mathrm{B}-\mathrm{H}-\mathrm{Al}$ bridges involving $B-H$ units on the $C_{2} B_{3}$ face. ${ }^{12}$ Several exo-polyhedral [$\left.L_{n} M\right]$ [$\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}$] species have been reported in which metal cations bind $\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}-$ anions via $\mathrm{B}-\mathrm{H}-\mathrm{M}$ bridges similar to those at $\mathrm{Hf}(1)$ in 1b. Notable examples include $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\right][7-\mathrm{Me}-$ $\left.8-\mathrm{Ph}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]$ and $\left[\mathrm{Ir}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{H}_{2}\right]\left[\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]$, in which the $\mathrm{Rh}^{[}$ and $\mathrm{Ir}^{\text {III }}$ centers coordinate the carboranyl anions via $\mathrm{B}-\mathrm{H}-\mathrm{M}$ bridges involving one $\mathrm{B}-\mathrm{H}$ unit on the $\mathrm{C}_{2} \mathrm{~B}_{3}$ face and one on the lower B_{5} ring. ${ }^{13}$ The structure of 1 b is perhaps most comparable to that of $\left[\mathrm{Et}_{2} \mathrm{Al}\right]\left[\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)_{2} \mathrm{Al}\right]$, in which a dicarbollide ligand binds to one Al in an η^{5} mode and to the other via two $\mathrm{B}-\mathrm{H} \mathrm{Al}$ bridges. ${ }^{14}$ This species is an unsymmetrical dimer of $\mathrm{EtAl}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)$.

The unusual structure of $\mathbf{1 b}$ raises interesting questions about the formation and reactivity of $\mathbf{1 a}, \mathbf{b}$, the mechanism by which these species catalyze olefin polymerization, and the relationships between $(\mathrm{Cp})\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right) \mathrm{M}(\mathrm{R})$ and $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{R})^{+}$species in general. ${ }^{1.9}$ Studies of these issues are ongoing.

Acknowledgment. This work was supported by NSF Grant CHE9413022. The CP-MAS spectrum of 1b was obtained by Dr. Richard Eckman at Exxon Chemical.

Supporting Information Available: Details of the X-ray crystallographic analysis of $\mathbf{1 b}$ ($\mathbf{3 7}$ pages); observed and calculated structure factors for $\mathbf{1 b}$ (8 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA951860W

(11) (a) Watson, P. J. J. Am. Chem. Soc. 1983, 105, 6491. (b) Evans, W. J.; Peterson, T. T.; Rausch, M. D.; Hunter, W. E.; Zhang, H.; Atwood, J. L. Organometallics 1985, 4, 554.
(12) (a) Young, D. A. T.; Wiersema, R. J.; Hawthorne, M. F. J. Am. Chem. Soc. 1971, 93, 5687. (b) Churchill, M. R.; Reis. A. H. J. Chem. Soc., Dalton Trans. 1972, 1314.
(13) (a) Long, J. A.; Marder, T. B.; Behnken, P. E.; Hawthorne, M. F. J. Am. Chem. Soc. 1984, 106, 2979 . (b) Knobler, C. B.; Marder, T. B.; Mizusawa, E. A.; Teller, R. G.; Long, J. A.; Behnken, P. E.; Hawthorne, M. F. J. Am. Chem. Soc. 1984, I06, 2990. (c) Doi, J. A.; Teller, R. G.; Hawthorne, M. F. J. Chem. Soc., Chem. Commun. 1980, 80.
(14) (a) Schubert, D. M.; Bandman, M. A.; Rees, W. S., Jr.; Knobler, C. B.; Lu, P.; Nam, W.; Hawthome, M. F. Organometallics 1990, 9, 2046. (b) Rees, W. S., Jr.; Schubert, D. M.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1986, 108, 5367. (c) Churchill, M. R.; Reis, A. H. J. Chem. Soc., Dalton Trans. 1972, 1317.

[^0]: (1) (a) Crowther, D. J.; Baenziger, N. C.; Jordan, R. F. J. Am. Chem. Soc. 1991, 113. 1455. (b) Crowther, D. J.; Jordan, R. F. Makromol. Chem., Macromol. Symp. 1993, 66, 121. (c) Analogous Ti chemistry: Kreuder, C.: Jordan, R. F.; Zhang, H. Orgonometallics 1995, 14, 2993.
 (2) Reviews: (a) Watson, P. L.; Parshall, G. W. Acc. Chem. Res. 1985, 18. 51. (b) Thompson, M. E.; Bercaw, J. E. Pure Appl. Chem. 1984, 56, 1. (c) Schaverien, C. J. Adv. Organomet. Chem. 1994, 36, 283. (d) Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325. (e) Marks, T. J. Acc. Chem. Res. 1992, 25, 57.
 (3) Compound $\mathbf{1 b}$. A solution of $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{13}(1.30 \mathrm{~g}, 9.68 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ was added by cannula over 15 min to precooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Cp}^{*} \mathrm{HfMe}_{3}(3.20 \mathrm{~g}, 8.93 \mathrm{mmol})$ in toluene (40 mL) under a N_{2} atmosphere. The N_{2} was removed under vacuum and the reaction vessel warmed to $23^{\circ} \mathrm{C}$. The evolution of CH_{4} began near $0^{\circ} \mathrm{C}$, and the initially colorless reaction mixture turned bright yellow. The reaction mixture was maintained at ambient temperature and degassed occasionally over 48 h . Half of the toluene was removed under vacuum, and hexane (50 mL) was added by vacuum transfer at $-78^{\circ} \mathrm{C}$, resulting in precipitation of a yellow solid. The bright yellow product was collected by filtration, washed with hexane ($3 \times 20 \mathrm{~mL}$), and dried under high vacuum for $15 \mathrm{~h}(3.55 \mathrm{~g}, 86.6 \%)$. The crude product was recrystallized from toluene/hexane (1/1) at $-35^{\circ} \mathrm{C}$ $\left(2.60 \mathrm{~g}, 63.4 \%\right.$ final yield). ${ }^{1} \mathrm{H}$ NMR (toluene- $\left.d_{8}, 300 \mathrm{MHz}\right): \delta 3.74$ (s, $1 \mathrm{H}, \mathrm{dc} \mathrm{CH}), 3.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{dc} \mathrm{CH}), 2.10\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{dc}$ $\mathrm{CH}), 1.70\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 1.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{dc} \mathrm{CH}), 0.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Hf}-\mathrm{Me})$, $-0.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Hf}-\mathrm{Me}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- $d_{8}, 75.5 \mathrm{MHz}$): $\delta 129.1$ $\left(C_{5} \mathrm{Me}_{5}\right) .121 .5\left(C_{5} \mathrm{Me}_{5}\right), 59.0\left(\mathrm{br}, \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right), 58.3$ (br, $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right), 49.1(\mathrm{Hf}-$ $\mathrm{Me}), 47.8(\mathrm{Hf}-\mathrm{Me}), 13.4\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right), 11.6\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$. CP-MAS ${ }^{13} \mathrm{C}$ NMR: δ 130.0 (br), 122.5, 54.0, 45.5, 16.6 (br), 12.5. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{58} \mathrm{~B}_{18}{ }^{-}$ Hf_{2} : C, 33.86; H, 6.34. Found: C, 33.97; H, 6.33.
 (4) (a) Manning, M. J.; Knobler, C. B.; Khattar, R.; Hawthorne, M. F. Inorg. Chem. 1991, 30, 2009. (b) Buchanan, J., Hamilton, E. J. M.; Reed, D.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1990, 677.

[^1]: (5) Crystals of $\mathbf{1 b}$-toluene were obtained by slow cooling of a concentrated toluene solution. Crystal data: orange plate, monoclinic, $a=17.330$ (4) $\AA, b=10.763(4) \AA, c=24.524(7) \AA, \beta=98.22(2)^{\circ}, V=4527(2) \AA^{3}$, space group $P 2_{1} / n, Z=4, \mathrm{fw}=1014.4$, calcd density $1.49 \mathrm{Mg} / \mathrm{m}^{3}$. Data in the range $4-50^{\circ}$ were collected at 291 K using Mo $\mathrm{K} \alpha$ radiation on an Enraf-Nonius CAD4 diffractometer. The structure was solved by direct methods and refined by full matrix least squares techniques. The $\mathrm{C}(11)-$ $\mathrm{C}(20) \mathrm{Cp}$ * group and the toluene are disordered and were treated as described in the supporting information. All H atoms were located except for those on the disordered $\mathrm{Cp}{ }^{*}$ group and the toluene. The positions of the H atoms $\mathrm{H}(31)-\mathrm{H}(35), \mathrm{H}(51)-\mathrm{H}(56)$, and $\mathrm{H}(60)$ were refined with the $\mathrm{B}-\mathrm{H}$ distances restrained to $1.10 \AA$. Additionally, the $\mathrm{Hf}(1)-\mathrm{H}(55)$ distance was restrained to $2.30 \AA$. The remaining H atoms were placed in calculated positions, and all H atoms were assigned calculated thermal parameters. See the supporting information for details. An empirical absorption correction was applied. Final $R=0.035$ for 2692 reflections with $F>4 \sigma(F)$. Final $w R_{2}=0.108$ on F^{2} for 3268 reflections and 420 parameters.

[^2]: (6) $\mathrm{B}(53)$ and $\mathrm{B}(54)$ lie 0.80 and $0.90 \AA$ from the $\mathrm{C}(100)-\mathrm{Hf}(2)-\mathrm{B}(100)$ plane.
 (7) The dihedral angle between the $\mathrm{B}(53)-\mathrm{Hf}(2)-\mathrm{B}(54)$ and $\mathrm{C}(51)-$ $\mathrm{B}(55)$ planes is 121.1°. Analysis of $\mathrm{H}-\mathrm{H}$ distances indicates that displacement of the $\mathrm{Cp}{ }^{*}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right) \mathrm{Hf}(2)$ unit to increase or decrease this angle would result in increased steric crowding between the Cp * or η^{5} $\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$ groups and the $\mu-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}$ group.
 (8) The $\mathrm{Cp}^{*}\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right) \mathrm{Hf}^{+}$acceptor orbitals lie in the plane between the η^{5} ligands. See ref 1 b . The dc^{2-} donor orbitals project out from the $\mathrm{C}_{2} \mathrm{~B}_{3}$ plane and tilt somewhat toward the center of the $\mathrm{C}_{2} \mathrm{~B}_{3}$ ring. See: (a) Hamilton, E. J. M.; Welch, A. J. Polyhedron 1990, 9, 2407. (b) Goursot, A.; Pénigault, E.; Chermette, H.; Fripiat, J. G. Can. J. Chem. 1986, 64, 1752. (c) Mingos, D. M. P.; Forsyth, M. I.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1978, 1363. (d) Mingos, D. M. P. J. Chem. Soc., Dalton Trans. 1977, 602.
 (9) For bent metallocenes incorporating $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}{ }^{2-}$ or $\eta^{5}-\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{4}{ }^{2-}$ ligands, see ref 1 and the following: (a) Bazan, G. C.; Schaefer, W. P.; Bercaw, J. E. Organometallics 1993, 12, 2126. (b) Marsh, R. E.; Schaefer, W. P.; Bazan, G. C.; Bercaw, J. E. Acta Crystallogr. 1992, C48, 1416. (c) Uhrhammer, R.; Crowther, D. J.; Olson, J. D.; Swenson, D. C.; Jordan, R. F. Organometallics 1992, 11, 3098. (d) Uhrhammer, R.; Su, Y.; Swenson, D. C.; Jordan, R. F. Inorg. Chem. 1994, 33, 4398. (e) Fronczek, F. R.; Halstead, G. W.; Raymond, K. N. J. Am. Chem. Soc. 1977, 99, 1769. (f) Manning, M. J.; Knobler, C. B.; Khattar, R.; Hawthome, M. F. Inorg. Chem. 1991, 30, 2009. (g) Oki, A. R.; Zhang, H.; Hosmane, N. S. Organometallics 1991, 10, 3964. (h) Siriwardane, U.; Zhang, H.; Hosmane, N. S. J. Am. Chem. Soc. 1990, I12, 9637. (i) Zhang, H.; Jia, L.; Hosmane, N. S. Acta Crystallogr. 1993, C49, 453. (j) Houseknecht, K. L.; Stockman, K. E.; Sabat, M.; Finn, M. G.; Grimes, R. N. J. Am. Chem. Soc. 1995, 117, 1163.
 (10) Crowther, D. J.; Borkowsky, S. L.; Swenson, D.; Meyer, T. Y.; Jordan, R. F. Organometallics 1993, 12, 2897.

